Some remarks on the Navier-Stokes equations in IR?

Pierre Gilles LEMARIE-RIEUSSET
Département de Mathématiques
Université d’Evry
Bd des Coquibus, 91025 Evry Cedex, France
e-mail: lemarie@lami.univ-evry.fr

Abstract : We study various existence and uniqueness results for solutions of the Navier-Stokes equa-
tions in connection with function spaces related to real harmonic analysis.

Keywords : Besov spaces, Lorentz spaces, Navier-Stokes equations, self-similar solutions, wavelets,
weak solutions



In this paper, we are mainly interested in reviewing recent results concerning weak solutions of the
Navier-Stokes equations which belong to C([0, +00), L3(IR?)). Such solutions were first studied by T. Kato
[KAT] in 1984. L? estimates have been used as well in the study of Leray’s weak solutions, leading to the
uniqueness theorem of H. Sohr and W. Von Wahl [WAH].

A new impetus has been given to the study of such solutions by the recent book of M. Cannone [CAN].
Following the idea of P. Federbush [FED] that a good time-frequency analysis of the fluctuation term (see
below) could give new existence theorems, M. Cannone uses the Littlewood-Paley decomposition instead of
divergence-free wavelet bases (used in [FED]) to provide a precise analysis of the fluctuation. In [FLT], we
show how this frequential analysis of the fluctuation, in terms of a Besov norm, could solve the uniqueness
problem for solutions in C([0,400), L3(IR®)). This frequential approach is highlighted by a result of Y. Le
Jan and A. S. Sznitman [LJS], which shows how to deal with the Fourier transform of the Navier-Stokes
equations. A short time after our result, Y. Meyer proposed a new proof using only spatial estimates, in
terms of a Lorentz norm [MEY 2]. We find very striking the fact that there is yet no actual time-frequency
analysis of the Navier-Stokes equations.

We will show as well the relation between our result and the Sohr and Von Wahl theorem. This implies
introducing energy estimates for L? solutions, a technique which is useful for proving existence of weak
solutions for initial value with infinite energy [LEM].

Besides, we will pay a few words on the self-similar solutions described by M. Cannone [CAN] and some
related asymptotic results of F. Planchon [PLA].

1. The Navier-Stokes equations in IR>.

The classical Navier-Stokes equations describe the motion of a Newtonian fluid; we consider only the
case when the fluid is viscous, homogeneous, incompressible and fills the entire space and is not submitted
to external forces; then, the equations describing the evolution of the motion (¢, z) of the fluid element at
time ¢ and position x are given by:

1) p & =pAd—p (@V)i—Vp

2) V.iZ=0

p is the (constant) density of the fluid, and we may assume with no loss of generality that p = 1. p is
the wviscosity coefficient, and we may assume as well that u = 1. p is the (unknown) pressure, whose action
is to maintain the divergence of @ to be 0 (this divergence free condition expresses the incompressibility of
the fluid). p can be expressed as a function of @, provided that @ vanishes at infinity; indeed, taking the
divergence of (1), we obtain:

(3) Ap=-V.(@V) @

and this formula allows one to eliminate p in many cases: indeed, formula (3) determines p up to an harmonic
function and the requirement that 4 remains equal to 0 at infinity allows one to get rid of the contribution
this harmonic term could have given to 0;u.

Since V.@ = 0, the equation (1) can be rewritten as well as:

- —

(4) Qi =AT-V.(G®u)—Vp

and we shall thus study solutions of (4) and (2) which vanish in a suitable sense at x = co. Moreover, we
complement (4) and (2) (and the boundary condition @ = 0 at infinity) by an initial value @ = dp at t = 0,
and we study solutions for ¢ > 0.



There is a huge literature on the mathematical theory of the Navier-Stokes equations; classical references
are the books by R. Temam [TEM], O.A. Ladyzhenskaya [LAD] or P. Constantin and C. Foias [COF]; a
more recent reference is the book by P.L. Lions [LIO].

A classical solution of (2) and (4) is a time-dependent vector field which has one bounded and continuous
time derivative and two bounded and continuous space derivatives. Existence of such solutions was obtained
first by C.W. Oseen in the beginning of the century [OSE]. Following the Picard iteration scheme, @ is
obtained as a fixed point of the associated integral transform: one considers first the linear problems (P1)
and (P2):

(P1) Vi =0, 8y = Adii — Vpr, 4i(0,) = ilo
The first one is easily solved by 4] = €2 iy = W; * @iy where Wt( ) = (4mt)~ 3/2¢=%" is the heat kernel on

IR3. The second one is solved by the 1ntegra1 formula: us = f Pelt-9)Af ( ) ds = fo O¢sx f ( ) ds where
P, the Leray- Hopf projection operator on divergence free vector fields, is formally given as the operator
matrix Id; — LV ® V and where the Oseen kernel Oy(z) = t=3/? O(%) is a matrix function given by

Okz) = (2m)~ f]R M —lgl* giz-g d¢. The functions O, are analytical on R? and satisfy for all

a € IN? 1(@)] € Co(1 + |z|)~G+leD, Then, we seek a solution @ of the Navier-Stokes
equations as a solution of the integral equation:

t
5) 7= Dy — / (V0 0,_,) * (G @) ds
0

where the j-th component of (V ® Oy_;) * (@ ® @) is given by DE2u (t—ls)2 ako‘j,l(\/f_—s) * (ug (s, x)u(s,x)).
Following P. Federbush, we call e!*®i, the tendency and f(f (6 ® O—s) * (€ @ @) ds the fluctuation.

Existence of a classical solution, whatever regular the initial value may be, is guaranteed only for a finite
interval of time. If we look for global solutions, i.e. solutions defined for every ¢ > 0, we have to consider
weak solutions, which were introduced in 1934 by J. Leray [LER] for @y € (L?)3, or mild solutions, which
were introduced by T. Kato in the early 60’s for the equations on a bounded domain and an initial value
in a Sobolev space [FUK] and in 1984 [KAT 1] for the equations on the whole space and @, € (L3)3. Weak
solutions satisfy equations (2) and (4) in the sense of distributions and mild solutions satisfy the integral
equation (5). As a matter of fact, the notion of mild solutions refers to an abstract approach of evolution
equations in a Banach space, but we shall stick to a more simple definition, because in the whole space the
Oseen kernel is quite explicit and so the integral equation can be handled in a more direct way.

2. Weak and mild solutions

We begin by defining weak and mild solutions of the Navier-Stokes equations on the whole space.

Definition 1: [Weak solutions]

A weak solution of the Navier-Stokes equations on (0,7) x IR? is a distribution vector field (t,z) in
(D'((0,T) x IR?*)? such that:
a) @ is locally square integrable on (0,T) x R?
b) V.i =0



¢) IpeD'((0,T) x R?) 9t = A
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For defining mild solutions, we consider only uniformly locally square integrable vector fields:

Definition 2: [Uniformly locally integrable functions]
For 1 < p < oo, we define F}, of functions which are uniformly locally in L? by: f € F, if and only if:
SUPpers Jy o<1 [fW)IP dy < +oo

It is normed by:

Iflr, = sup ( /| _wp a?
Yy—rls

z€eR3

Moreover we define E, as the closure in F, of D(IR?); this is the space of the elements in F}, which vanish
at infinity and it is characterized by limy_, o fly7w|<1 |f(y)|? dy = 0.

Definition 3: [Mild solutions]

A mild solution of the Navier-Stokes equations on (0, T*) xIR® with initial value @ € (S'(R%))3, V.i =
0, is a vector field @(t,z) in (D'((0,T*) x IR®)? such that:
a) (RS Nr<T= Lz((oa T)a (F2)3)
b) @ = ey — [1(V® Op_,) % (@ ® @) ds.

The point is that when v € F; then 9;v belongs to a Banach space Y of tempered distributions whose
norm is shift invariant (so that convolution with functions in L' operate boundedly on Y) and on which
the Riesz transforms \/B_j—A operate boundedly (for instance, ¥ can be defined as the space of distributions

which split in a sum of a low-frequency term in Bgol’oo and a high-frequency term in Bgo“*"o). Thus, if
@ € Nr<r-L?((0,T), (F2)%) we find that @ = fg(? ® O4—s) * (& ® @) ds is well defined and belongs to
Nrer-L®((0,T), (Y)3); moreover it satisfies 8, = A +P(V.(@® @) and limy_,o [@]y = 0. See [FLT] for
further details.

The two notions of weak and mild solutions are equivalent for solutions which vanish at infinity [FLT):

Propositionl: Let @ € Nr<7-L?((0,T), (F»)?). Then the following assertions are equivalent:

(A) @ satisfies the following requirements:
a) V.a=0
b) 0yl = AG —TP(V.(TQ @)
where IP is the Leray-Hopf projection operator on divergence free vector fields.

(B) i is a mild solution of the Navier-Stokes equations: 3y € (S'(IR*))3 such that
a) V’J() =0

T =ity — [} IAP(V.(7 ® @) ds

If we assume that @ vanishes at infinity (i.e. we assume more precisely that @ € Ny<7- L2((0,T), (E2)?))
then (A) and (B) are equivalent to the following assertion:

(C) @ is a weak solution of the Navier-Stokes equation:
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a) V.i=0
b) 3p € D'((0,T*) x R?) 8,if = Al — V.(T®u) — Vp

Sketch of the proof:

Equivalence between (A) and (B) is a simple exercise on distributions (derivatives and integrals are
weakly defined: apply equations to a test function in CZ5,,,( (0,7) x IR?)). For equivalence between (A)
and (C), we have to prove that we may apply IP to (C) and that it gives (A); we may apply IP to high frequency
components without any problem: let ¢ € D(IR®) be such that [£| < 1 = ¢(¢) =1 and |¢] > 1= ¢(£) =0
and let S; be defined as the Fourier multiplier F(S; f) = p(£/27)F f; then IP(Id — S;) operates boundedly
on 83 and (8')3; thus (C) gives 8;(Id — S;)ii = A(Id — 8;)@ — (Id — S;)PP(V.(& ® @) and we may conclude
since for u € By we have Sju — 0 weakly in S’ when j — —oo while |S;P(V.(Z ® @))]e0 < C2|d@|3,. o

Almost all the solutions we shall consider in this paper are weak/mild solutions in the sense of Proposition
1 : for instance, the Leray solutions (which are in L>°((L?)3)), the Kato solutions (which are in L ((LP)?3)
for some p € [3,00)), the Cannone self-similar solutions (which satisfy for some p € (3,00) t/2-3/2P ¢
L*((L?)?)), the Meyer solutions in L ((L*>)?), and so on .

Since a mild solution is defined as a fixed point of an integral transform, one may expect some uniqueness
results. The following one is quite obvious:

Definition 4: [Regular mild solutions]
A mild solution @ of the Navier-Stokes equations on (0,7*) x R® is called regular if it satisfies the
following requirements:
a) @ € Np<r-L>®((0,T), (F)?)
b) @ € NocecT<+L=((,T), (L*>)?)
¢) limy_yo v/ |@(t,.)]co = 0

Proposition2: Let iy € (F»)?, V.ily = 0. Then there exists at most one regular mild solution with g
as initial value.

Proof:
Define B(f, §) fo (V®O;_,)*(f®7) ds. Let @ and & be two regular mild solutions: @ = et® iy—B(i, @)
and ¥ = et® iy — B(¥,¥) so that @ = @ — ¥ is solution of the equation W = —B(w, %) — B(i, w). Now, we

use the fact that the norm of F is shift invariant and the fact that V ® O;_, is a convolution matrix with
functions whose L' norm is O(1/+/t — s) to get:

(- ds sup [i(s, )|r, 0S<1lgt\/5(||ﬁ(s,-)||<>o+||17(S,-)||oo)

||F2—C/\/—f

Since [ ~i= 5 ds =, we get local uniqueness (as long as 7 C' supo,<; v5(|@(s, )0 + [T(s, ) oo) < 1):
indeed, we then have supy,; [@i(s,.)|m, < 7 C supgc,<; v/s(|E(s, ) oo + [0(s,)lo0) SUPG< st [1(s, ) |
which gives supy,; |@(s,.)|r, = 0. Then, global uniqueness follows by looking at the largest ¢ such that
@ = ¥ on [0,t) and applying local uniqueness again on [t,t + dt]: since F» is a dual space and since @ and
7 are weakly continuous into (S'(IR®))3, we find @(t,.) = v( .) € (F»)?® while @ and @ are mild solutions on
(t,T*) with @(¢,.) as initial value; moreover, since @ and ¢ are bounded on (¢,T') for all T < T*, they are
regular mild solutions. e




3. Existence of regular mild solutions

Existence of regular mild solutions has been proved for an initial value @y in many spaces: Sobolev
spaces H® for s > 1/2 [FUK], Lebesgue spaces L? for p € [3,00) [KAT 1], Besov spaces, Morrey-Campanato
spaces and others. We will focus on the Morrey-Campanato space M» 3:

Definition 5: [Morrey-Campanato space]
For 1 < p < g < o0, the Morrey-Campanato space M 4 is defined as the spaces of functions f which
are locally in L? and such that:

1 1
©) sw s ([ WP d) <o
z€R3, 0<r<1 T q |lz—y|<r

where the left hand side of inequality (6) is the norm of f in My ,.
The homogeneous Morrey-Campanato space M, , is defined in the same way, by taking the supremum
on all r € (0,00) instead of r € (0, 1].

It is easy to check that M, , = F}, Fy C M, 4 and M, = L. Existence of solutions in Morrey-
Campanato spaces has been discussed by several authors (see for instance [CAN], [FED], [FLT], [KAT 2],
[KOY], [TAY]). We shall specialize our attention to two subspaces of My 3:

Theorem 1: [Mild solutions in M 3]

Let @ € (M2 3) ﬁ %o = 0. Then:
a) U = ety satisfies supysq [Tasss +5uPoci<t VT oo < C |0l
b) If lim; 0 V%[ €|« = 0, then there exists T* = T*(ily) > 0 and a regular mild solution @ on (0,T7*) x R?
with initial value @y. Moreover, @ € Ny<7-L°°((0,T), (M2,3)3).
c¢) There exists two constants €g,e; > 0 such that if 4y € (M2,3)3 and || Moy < €0 then there exists a
mild solution @ on (0, 00) x IR? with initial value @ such that sup, || My < 00 and sup;sg Vil oo < €1
Moreover such a solution is unique.
d) Under the hypotheses of ¢), if |do] y;, , < €0 and @y is homogeneous (VA > 0 dp(Az) = Tio(x)) then @ is
selfsimilar: VA > 0 @(A\*t, Az) = Li(t, z).

Sketch of the proof: .
The proof is by now quite classical. It is enough to check that the operator B (defined as B(f,J) =

fo (V® 0;_,) * (f® ) ds) is bilinear continuous on E and on E where

B ={f e L*(0,T),(M2)")/ sup v |flow < o0, lim v/ |floc = 0}

B = {f e L®((0,00), (Ms3)%)/ %‘i‘zﬁ | floo < 00}

Indeed, we have the inequalities "(6 ® Op—s) * (_’ _’)”Mzs < C\/%"(f(@ §||M2,3 < C\/%"ﬂ|M23"g’"00

and [(V ® Or-) % (F© Plos < Cinf(Lole FoTtasy o cring(Uflee Ftnsyy o) rom which we gt

IB(f, 9|5 < Colflsupocscr v/5l9(s; )l where Co does not depend on T
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Then a contraction argument shows existence and uniqueness of the solutions. We show how to prove
point b) (point c) is shown in a very similar way and point d) is obvious since the norm of M> 3 is invariant

through the transformation f(x) — X f(A\z)). We first notice that we have ||B(f: ) = B3, 9, z)|g <

Co suPgcsct I(f = (5, 2) |5 5uPsc ot (V5 |5, 2) oo + V5 |§(5,2)]0). Moreover we have |B(f f)oo <
C1SUpPgcsey ||f||}\,g3 SUPg<set ||f||?;é2 Thus if Ry = |0 as,,5, if €0 > 0 is chosen such that C1v/2Rgpep < 1 and

2Co€p < 1, and if T* is chosen such that supgc <+ |€*2 o] < €0, then the map f— et®iy— B(f, f) maps
the closed subset of E defined by {@ / supgcsere |@]am.s < 2Ro and supg gop- [@]oo < €0} into itself and
is a contraction on it; thus we have a fixed point in this set, which can be obtained by iterating the map. e

Remark : The smoothness of regular solutions in Morrey-Campanato spaces is discussed in details by
T. Kato in [KAT 2] and by M. E. Taylor in [TAY]. There is some difficulty in the fact that these spaces are
not separable, hence e!® is not a Cy-semigroup on these spaces.

4. The Littlewood-Paley decomposition

In the next section, we shall discuss the theory of M. Cannone about adapted spaces for the Navier-
Stokes equations. It relies on the Littlewood-Paley decomposition of tempered distributions. In this section,
we recall briefly some points of the Littlewood-Paley theory.

Definition 6: [Littlewood-Paley decomposition]

Let ¢ € D(IR®) be such that |{| < 2 = ¢(§) = 1 and [§] > 1 = ¢(§) = 0. Let ¢ be defined
as (&) = p(&/2) — p(€). Let S; and A; be defined as the Fourier multipliers F(S;f) = p(£/29)Ff
and F(A;f) = $(¢/29)Ff. Then for all N € Z and all f € S'(R?) we have f = Snf + YisnAf
in S'(IR?). This equality is called the Littlewood-Paley decomposition of the distribution f. If moreover
limy_, o Snf = 0in &', then the equality f = )., A, f is called the homogeneous Littlewood-Paley
decomposition of f.

JEZL

A, f can be viewed as a filtering of f through a bandpass filter which selects the frequencies around
€] ~ 27,

A very basic tool in using the Littlewood-Paley decomposition is the so-called Bernstein inequalities
which express how to control the L? norm of the derivatives of the dyadic blocks:

Va € IN* 3C, Vp € [1,00] Vf € LP  [0%S;flp < Ca 271% |S; fl,

Vo € IN® 30, Vp € [1,00] Vf € IP  [8%A;f]p, < Cu 2711 |A; £,
Va € R3C, Vp€ [1,00] Vf € LP  [(V=R)*A;flp < Co 271 |A;fl,

whereas we easily control the L9 norm of a dyadic block by its LP norm if ¢ > p:

3C Vp € [1,00] Vg € [p,00] Vf € LP  |S;flq < C 2I/P=3/9) |5 ],

Besov space B;? may be easily defined through the Littlewood-Paley decomposition as the space of
tempered distributions f such that for all j € IN we have S;f € L? and such that moreover 2/°|A; f|, €
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17(IN). The space B 1> plays a key role in finding regular mild solutions since f € B> if and only if
VT > 0supo <yt Vi[e!® floo < 0.

For further informations on the Littlewood-Paley decomposition, the reader may consult the classical
book of Bergh and Lofstrém on interpolation spaces [BEL], the nice booklet of Frazier, Jawerth and Weiss
on Littlewood-Paley decomposition and wavelets [FJW], the book of Y. Meyer on Wavelets and Operators
(IMEY 1], vol. 3) and the various treatises on paradifferential calculus.

5. Adapted spaces for the Navier-Stokes equations

Definition 7 [CAN] : [adapted spaces]

A Banach space X is adapted to the Navier-Stokes equations if the following assertions are satisfied:
a) S(R®) C X C S'(IR?) [continuous imbeddings]
b) The norm of X is shift invariant:

Vf € X Voo € R |f(2)lx = | f(z = o)lx

¢) the pointwise product between two elements of X is still well defined as a tempered distribution
d) there is a sequence of real numbers 7; > 0, j € Z, such that

ZQ_M n; <00

JEZ

and such that
VieZLNfe X, Vge X |A;(fa)lx <nj |flx lglx

Theorem 2 [CAN]: Let X be a Banach space adapted to the Navier-Stokes equations. Then, for all
iy € X3 such that V.up = 0, there is a T* = T*(Jup|x) and a unique solution @ of the Navier-Stokes
equations on (0,7*) with initial value iy such that @ — e*®iy € C([0,T*),X?). Moreover we have the
inequality:

Vi€ (0,T%) | — e ap|x <C (£ Y 2+ Y 279m) [udl%
47¢<1 49t>1

Sketch of the proof: The proof lies again on the Picard iteration scheme. The main point is to prove
that the bilinear transform @, ¥ — @ = f(f et=9)AP(V.(@ ® 7)) ds is continuous on L®(X?). It is enough to

notice the following properties of this operator: ) e(!=921P(V. ) is a matrix of convolution operators; 3)
since the norm of X is shift invariant, we have for f € X and g € L' |f *glx < |flx lgl; v) for all j we
have A; = ( zijf; Ay) Aj; 8) we thus may conclude that

|eli=9AP(.4,(7 @ )|x < Cmin(2,475(t — 5)%/2) |A;(@ & 9))lx
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The continuity of the bilinear transform is then easily established, writing

t
l@lx <) 18] x < /0 Y TIRP(V.A (@@ )|x ds

JEZ JEZ
and estimating the integral fot > jem min(29,477(t —5)73/2) 1 ds. o

If we look precisely at the definition of an adapted space (and at the examples developed by M. Cannone),
we may see that the theorem is not really a result about ezistence of solutions but a result about regularity at
t = 0 of mild solutions. Indeed, let us assume that assertion c) in the definition is ensured by the embedding
of X in L? ., the space of locally square integrable functions, and that X is invariant under dilations as well
as translations: VA > 0 f — f(A\z) is a continuous mapping in X. Then we have the following result:

Proposition3: Let X be an adapted space for the Navier-Stokes equations. If X is continuously
embedded in L?  anfif YA >0 f — f(\z) is a continuous mapping in X, then X is continuously embedded

loc

in My 3 and for all f € X we have lim;_,o v/#|e!® f]oo = 0.

Proof: Since the norm of X is shift invariant, the embedding X C L? is equivalent to X C F5. Thus,
we may define the following numbers:

a(r)=  sup / _ WP
z—y|<r

[flx<1, zeR3

We are going to estimate a(r) for r < 1. We choose a smooth non-negative function  which is equal to
Lon |z] <1 ant to 0 for [z[ > 2, and we write f> = So(f?) + (32,50 2;(f?)) = g+ h. It is easy to see
that g is bounded (since f? € F} and that Sp maps F; into L) so that | [ g(y) (%) dy | < Cr®|f|%-
We may write h as 33, ;.3 0jh; where h; € X and [hj|x < C|f[%; we then have: | [h(y) 6(%7) dy | <
Yicj<s U/ [ [ hi(y) 0;0(%7F) dy | < C /r \/a@r)|f]%; since a(2r) < Ca(r) and f|z_y|gr|f(y)|2@ <
J(9(y) + h(y)) 6(XF) dy , we obtain that for r < 1, a(r) < C(r® + \/a(r)/r) which gives a(r) < Cr: thus
X is embedded in the Morrey-Campanato space M 3.

This implies that X C B> (and in particular that supy<;<; vV € floo < C[f]x). We are now
going to show that we have also lim_,o [€!® f|co = 0. Indeed let us define

Cj= sup [A;f]e
IFlx<t

. Since X is invariant through dyadic dilations, we see that C; is slowly varying: 3y > 1 Vj € Z % <
C; .
oL < If f; satisfies | fj|x =1 and |A; f;(0)| > 1/2 Cj, then f; fivs =3 1<p<jys Du(f fit+s), hence

S
1/4 Cj Cjts < (X 41<k<jrs Cr) (X j<i<jrem)- Thus, we get lim;_, oo 277C; = 0. This is just what we
needed to show: write for f € X f =Syf+3 ;55 Ajf = fn + gn; then for ¢ € (0,1] and N > 1 we have:
VE e floo < VE [ fnloo + VE |2 gN 00 < VE [fNloo + C lgnl gzt < C@NVE+ supj>n277C))| flx

Thus, we have shown that the spaces studied by M. Cannone are subspaces of one space, the space

Ms,3. Moreover, for all the examples quoted in [CAN] [Sobolev spaces Hy(p < 3,5 > % — 1), Morrey-

Campanato spaces M2*P(p > 3), Lebesgue spaces LP,(p > 3)], we have the property that Vf,g € X N
L™ |falx < C (|flxlgloc + l9lx]floo) so that the regular mild solutions described in Theorem 1 are as
well in Nr<7+L>((0,T), X3) (and we may notice that conversely a mild solution in Ny<7- L=((0,T), X?)
where X is one of these spaces is in fact a regular mild solution). It means that we do not need a very precise
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analysis in frequency for proving existence of a solution. Moreover, the tools used for exhibiting solutions
in M» 3 can be used as well for obtaining regularity results in the limit cases of Cannone’s theorem, when
n; = 27 (think of L3: this is the same recipee that we use in limit cases [FLT]).

6 Selfsimilar solutions

In view of theorem 1, we see clearly the strategy for exhibiting selfsimilar solutions to the Navier-
Stokes equations. We take a space of tempered distributions X which contains non-trivial homogeneous
distributions and try to get a theorem of global existence and uniqueness for solutions of the Navier-Stokes
equations. Again, we assume that the norm of X is shift-invariant, and we assume, for sake of homogeneity,
that |[f(Az)|x = %|flx. This implies that X C Bz, or equivalently that for all f € X we have

supg<; VE [ floo < C|f|x-

We write again B( f J) fo (V®O0; ) *( f® J) ds and we have to check on which Banach space based
on X and containing the tendencies e**iy for @y € X° the bilinear transform B is continuous. The first
space we can try is E = L*((0,00),X 3). Of course, the bilinear product uv should then be defined for
elements of X, hence we should assume that X is embedded in L} ; we then find that X C M3, so that
this case has already been discussed. There are many instances of spaces X which can be treated this way
and provide selfsimilar solutions: homogeneous Besov spaces BS * where p < 3 and s = 3/p — 1 [CAN],

[CHE], [FLT], the Lorentz space L** [MEY 2] and the space BPM ={f/|€]* Ff € L*°} used by Y. Le Jan
and A. S. Sznitman [LJS].

We may use the smoothing effect of e!* and try to start from more singular initial value. M. Cannone
[CAN] and F. Planchon [PLA] have shown that one could take @ € B;"x’ where p € (3,00) and s =3/p—1
Then E = {f/ supy, t*/273/22| f(t,.)], < oo} is a good choice.

This latter example can even be generalized by replacing LP by F,. We thus may consider a @ €
(B1>°)? such that supg., t'/273/2P|e!A iy, < oo; then if this quantity is small enough, we shall have
a mild solution in X, = {f/supge, /3% f(t,.)|r, < 0o}. As a matter of fact, the first instance of
selfsimilar solutions was constructed with help of Morrey-Campanato spaces [GIM]. X, is a kind of Besov
space above a Morrey-Campanato space, as in [KOY].

Self-similar solutions are connected to the asymptotic behaviour of solutions as ¢ goes to co. F. Planchon
[PLA] has studied the problem of solutions @(t, z) such that sup,~q t*/273/?P| ], < oo and lim;_,o vt @(t, v/tz)J}
exists in L? where p is fixed in (3, 00).Then the initial value i@, (well defined since @ € Nr>o L?((0,T), (F2)?))

3/P=12° the limit V = limy_oo v @(¢, Vi) satisfies that %V(%) is a self-similar solu-

3/p—loo of \%V(%) satisfies e®vy =
limy_,00 v/t {20} (¢, v/tx) in LP. Notice that this proves that the asymptotic behaviour is governed only by
the lowest frequencies of the initial value 4y, since for all N € ZZ we have v/t [{e!®(Id — Sn)iio}(t, Viz)|p <

C L ldiing ||Bs/p 1o < C 5a7|(Id - SN)uo||B3/p 100 and thus e2d = limy oo vVt {€!2Snilo} (¢, V).

belongs to B

tion of the Navier-Stokes equations and the initial value ¥y € B

7. Uniqueness in limit spaces

In this section, we pay a few words to the uniqueness problems for mild solutions in C([0,T*), (L?®)?).
As a matter of fact,we may not construct directly a solution in C([0,T*), (L?)?), given @y € (L3)3, because
L3 is a limit space and this is not clear whether B is continuous or not on C([0,T*), (L3)3). The reader may
find various constructions in [KAT 1], [CAN] or [PLA], and uniqueness was granted only in the subspaces
of C([0,T*),(L?)?) where the iteration algorithm converge (for instance for regular mild solutions). The
constructions aimed to prove that the fluctuation was in C([0, To) ), and even in a smaller subspace
(such as C([0,T*),(Y)3) with ¥ = B0 ' [CAN], [FLT] or YV = By’ [PLA] or, as one may easily check for
a regular mild solution, Y = L31). The idea we had in [FLT] was that the problem of uniqueness could
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be treated in a greater space, since one did not bother to get an estimate especially in the L3 norm, the
solutions being already given.

The example of Le Jan and Sznitman [LJS] is particularly interesting. They consider the limit space
X = B12, W and show in a very simple way that the operator B is well behaved on this space. As a matter
of fact, since the Riesz transform are obviously bounded on this space, we may just look at the scalar
b111near operator A(u,v) = f e(t=9)2/_A(uv)ds operating on L*(X). Now, they do not try to prove that

fg’ Je®=*)A/=A(uv)| xds can be controlled; this is a too gross estimate. But the estimate they use is even

more direct: \/+_A(ufu) € X since (taking the Fourier transform) it is enough to notice that # * # < %

(an obvious inequality due to radial invariance and homogeneity), and then one writes:

t o)
F{A@uo) (1, )}(6) < W sup lulx sup Jolx / 0=y < 1 sup Julx sup Tolx / e Tdr
0 0

|§|2 0<s<t

These simple estimates suggest that one can deal with certain limit spaces, as far as their norm can
be computed frequency by frequency or at least by frequency packets. This is the case of the Besov I*
spaces: if X is a Banach space of tempered distributions with a shift invariant norm and if BY™ for

s > 0 is the space of distributions f = 37, A;f such that 277°|A; f|x € I°°(Z), then Vs € (0,2) Vf €

©((0,00), BY™)  J5T TAe™Af(1,.) & € BY™.

Thus we see for instance that B operates boundedly on Bl/ %% and this implies readily uniqueness of
mild solutions in C((0,T*), H'/?). This argument does not work directly for the limit space L? since we then
should work with the Besov space By™ which is not embedded in L2, so that we would be bound again to
use the smoothing effect of the heat kernel.

The next idea is to split the solutions in tendency and fluctuation. We consider two mild solutions
i = etPily — B(ﬁ, u) = By — W) and T = ey — B(#,7) = ety — Wy in C((0,T*),(L?)%) and write
W=14—U=w —w =—B(wW,7) — B(d,w). Thus we see clearly the role of the fluctuations: they control
the behaviour of @. Indeed, we now turn to the scalar operator A (since the Riesz transforms operate on all
the spaces involved in our computations) and write first:

ds
t—s

A, 0) = —(—A)~1/4 /0 (t — $)Ae=DD(A)~1/4 (4

and find that A maps C([0, 7], L®) x C([0,T), L?) into L>°([0,T], (B;/z’m) due to Sobolev inequalities. Then

we use the continuity of u to split it in u; + uay (and the same for v) where YVt < T™* |u1(¢,.)|s < € and
SUPp<scy [u2(5,-)]a < 0o. Now we notice that, due to Sobolev and Hélder inequalities, ¥V f € LP(—A)~3/2P M,
(where M is the operator of pointwise multlphcatlon by f) is continuous on L? for all g € ( £ 00) and
on L 3/ for all g € (1,p), hence by interpolation on BS * for all ¢ € (;25,p) and all s € (0,3/p). Taking
p=3,4,g=2,s =1/2, we easily get that:

VT < TVt <T |A(uw)(t, )||Bl/2oo < C (e+ C(T,u) t/%) sup |w(s, I grr2.00
0<s<t 2

which implies w = 0 as far as C' (e 4+ C(T,u) t'/4) < 1; hence we find that we have local uniqueness and this
uniqueness propagates to the whole interval [0, 7*) because of the continuity of @ and .

Thus, a precise analysis of the frequencies involved in the fluctuation allows one to prove uniqueness in
C([0,T™), (L?)?) This proof works in a more general pattern:

Theorem 3 [FLT]: Let 7,3 is the closure of the smooth compactly supported functions in M, 3. If
p > 2 and @ and ¥ are two weak solutions of the Navier-Stokes equations on (0,7*) x IR? such that @ and @
belong to C([0,T*), (m,,3)%) and have the same initial value, then @ = 7.
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Hence we have uniqueness in C([0,7*), (Y)?) for all limit space Y in which the test functions are dense
and which is embedded into L? _for some p > 2.

loc
But for L?, there is now a much simpler way to get uniqueness: the space Bg*‘” was not good for
proving uniqueness but it can be replaced by another [ space: L*° [MEY 2]. Moreover this result

is not really new: the fact that f — fg(t - s)Ae(t_s)A\/i—Af(s, )(td_—ss) maps L*((0,T), L3/%*) into

L*>((0,T), L**>) can be considered as a dual result to the fact that f — fST(t - s)Ae(t_s)Aﬁf(t, )(t‘f—ts)

maps L'((0,T), L3/?>") into L'((0,T), L?"); this latter result is proved in exactly the same way than the

fact that f — fot(t —5)Aelt=9)A \/i—Af(s, )(t‘i—ss) maps L'((0,T), L3/%1) into L*((0,T), L*') or the fact that

f— fot e(t=8)A f(s,.)ds maps L'((0,T), L3/*') into L'((0,T),Co) [remember that \/+—A maps L*! into Co],

a fact which is used by P.L.Lions in [LIO] to get the Foias-Guillopé-Temam theorem that the Leray weak
solutions belong to Nr~oL((0,T),Co)!

8. Weak solutions with infinite energy

There is still another way to prove uniqueness in L?. We split i@y in @y + @y where @ € (L?)® and
|@Wo|s < €. Then Kato’s theorem allows one to find a regular mild solution @ on (0,00) x R?® with initial
value o and Leray’s theory allows one to find a weak solution @ € L>((0,00), (L?)?) N L2((0, 00), (H')?) of
the problem

#0,)=0,V.0=0, 7= A7 —P(V.[RT+TQ T + 7 @ 7])

with an energy estimate:
t — t —
vt > 0 |3 )12 + 2/ 1Y @ (s, )|2ds < [o]% + 2/ Veided ds
0 0

Now, if 7 is a mild solution of Navier-Stokes in C([0,7*),(L?®)®) with initial value iy, then 2 = @ — 1 is
a solution for the same problem as @ and belongs to C([0,T*),(L3)3). If we can prove that Z belongs to
Nr<r~L®((0,T), (L*)®)NL*((0,T), (H")?), then we may apply the Sohr and Von Wahl uniqueness theorem
[WAH] to get @ = ¥+ & on (0,7*). Since ¥ + & does not depend on , this proves uniqueness of @! This
is exactly what is done in [LEM], and moreover this method provides a way to prove existence of global
suitable weak solutions for the Navier-Stokes equations with initial value with infinite energy.

Definition 8 [CKN]: [suitable weak solutions]
A suitable weak solution of the Navier-Stokes equations on (0,7 is a distribution vector field (¢, z) in
(D'((0,T) x IR®)? such that:
a) @ and V ® @ are locally square integrable on (0,7T) x R
b) V.t =0
¢) Ip € L;*((0,T) x R®) 8,ii = Adi — (@.V) i — Vp
d) for all compact subset K of (0,T) x R® we have SUPye(0,T) f(t,z)eK |@)? dz < 400

e) Vo € D((0,4+00) x IR?®) such that ¢ > 0 we have:

2//|ﬁ®a|2 @ dr dt < // @] (Orp + Ap) dz dt+//(|z‘[|2 +2p) (@.V)g dz dt
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We recall that suitable solutions were proved in [CKN] to be regular outside from a subset of (0, 7T) x IR?
whose 1-dimensional Hausdorff measure is equal to 0. The theorem proved in [LEM] states the existence of
global suitable weak solutions for an initial value 4 € LI(IR*) where 2 < ¢ < oo:

Theorem 4: [ suitable weak solutions with unbounded energy]
Let q € [2,+00) and let 4 € LI(IR?) such that V.iy = 0. Then there exists a suitable weak solution @
of the Navier- Stokes equations on (0, +00) such that @ belongs to Ny~ L?((0,T), (E2)®) N L7((0,T), (L9)3)

with + = §(3 — ;) if ¢<6and 1 =1~ 2 if ¢ > 6) and such that (0,.) = p.
2

Acknowledgements: The author thanks G. Furioli and E. Terraneo for their useful comments on the
first version of this paper. He thanks them too (and M. Cannone, F. Planchon and Y. Meyer) for many
valuable discussions on the Navier-Stokes equations.

References

[BEL] BERGH, J. & LOFSTROM, J., Interpolation spaces, Springer-Verlag, 1976.

[BON] BONY, J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées
partielles non linéaires, Ann. Sci. Ec. Norm. Sup. 14 (1981), pp. 209-246.

[CKN] CAFFARELLL L., KOHN, R., & NIRENBERG, L., Partial regularity of suitable weak solutions
of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), pp. 771-831.

[CAN] CANNONE, M., Ondelettes, paraproduits et Navier-Stokes , Diderot Editeur, Paris, 1995.
[CHE] CHEMIN, J.Y., Sur I'unicité dans le systéme de Navier-Stokes tridimensionnel, Preprint, 1997.
[COF] CONSTANTIN, P. & FOIAS, C., Navier-Stokes equations , Univ. of Chicago Press, 1988.

[FED] FEDERBUSH, P., Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993),
pp- 219-248.

[FJW] FRAZIER, M., JAWERTH, B. & WEISS, G., Littlewood-Paley Theory and the Study of Function
Spaces, CBMS Regional Conference Ser. 79, Amer. Math. Soc., 1991.

[FUK] FUJITA, H. & KATO, T., On the Navier-Stokes initial value problem, I, Arch. Rat. Mech. Anal.
16 (1964), pp. 269-315.

[FLT] FURIOLL G., LEMARIE-RIEUSSET, P.G. & TERRANEO, E., Unicité dans L? (IR?) et d’autres
espaces limites pour Navier-Stokes, work in progress.

[GIM] GIGA, Y. & MIYAKAWA, T., Navier-Stokes flow in IR? with measures as initial vorticity and
Morrey spaces, Comm. P.D.E. 14 (1989), pp. 577-618.

[KAL] KAHANE, J.P. & LEMARIE—RIEUSSET, P.G., Fourier series and wavelets, Gordon & Breach,
London, 1995.

[KAT 1] KATO, T., Strong LP solutions of the Navier-Stokes equations in IR™ with applications to
weak solutions, Math. Zeit. 187 (1984), pp. 471-480.

[KAT 2] KATO, T., Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil.
Math. 22 (1992), pp. 127-155.

[KOY] KOZONO, H. & YAMAZAKI, Y., Semilinear heat equations and the Navier-Stokes equations
with distributions in new function spaces as initial data, Comm. P.D. E. 19 (1994), pp. 959-1014.

13



[LAD] LADYZHENSKAYA, O.A., The mathematical theory of viscous incompressible fluids , Gordon
and Breach, 1969.

[LJS] LE JAN, Y. & SZNITMAN, A. S., Cascades aléatoires et ’equations de Navier-Stokes, C. R. Acad.
Sci. Paris 324 Série I (1997), pp. 823-826.

[LEM] LEMARIE-RIEUSSET, P.G., Solutions faibles d’énergie infinie pour les équations de Navier-
Stokes dans IR®, work in progress.

[LER] LERAY, J., Essai sur le mouvement d’un fluide visqueux emplissant 1’espace, Acta Math. 63
(1933), pp- 193-248.

[LIO] LIONS, P.L., Mathematical topics in fluid mechanics, vol. 1, Oxford Science Publications, 1996.
[MEY 1] MEYER, Y., Ondelettes et opérateurs , three volumes, Hermann, 1990.

[MEY 2] MEYER, Y., Wavelets, paraproducts and Navier-Stokes equations, to appear as Memoir of the
AMS.

[OSE] OSEEN, C.W., Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsge-
sellschaft, Leipzig, 1927.

[PLA] PLANCHON, F., Solutions globales et comportement asymptotique pour les équations de Navier-
Stokes., Thesis, Ecole Polytechnique, 1996.

[TAY] TAYLOR, M.E., Analysis on Morrey spaces and applications to Navier-Stokes equations and
other evolution equations, Comm. P. D. E. 17 (1992), pp. 1407-1456.

[TEM] TEMAM, R., Navier-Stokes equations , North Holland, 1977.

[WAH] VON WAHL, W., The equations of Navier-Stokes and abstract parabolic equations. Vieweg &
Sohn, Wiesbaden, 1985.

14



